
  
Abstract – In this paper we investigate the influence of 

fiber dispersion and nonlinearity on the signal generated by 
directly modulated laser. We find that fiber dispersion 
combined with relaxation oscillations of the laser can cause 
considerable degradation of the signal at the receiver end. 
This leads to distortion of the eye diagram and narrowing  of 
the eye opening. The nonlinear effects are not so pronounced 
at low bit rates and short fiber lengths. 
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1. INTRODUCTION 

 In optical communication systems, intensity modulation 
is the most common modulation technique. It can be 
performed externally or directly. The external modulation 
is based on electroabsorption or Mach-Zehnder 
modulators, while in direct modulation the output signal is 
driven by the applied current. In order to make the system 
simpler and cheaper it is advisable to modulate the laser 
directly. One of the applications of directly modulated 
lasers is in ''radio-over-fiber'' systems. The main flaw of 
this type of modulation is the occurance of phenomenon 
called relaxation oscillations, which may cause signal 
power degradation and increase of bit-error-rate (BER), 
even at low bit rates [1]. In this paper, we study the effects 
of fiber dispersion and nonlinearity on relaxation 
oscillations and their influence on eye diagram at the 
receiver end. 
 Pulse propagation is usually modeled by the nonlinear 
Schrödinger equation (NLSE) [2], which will be 
introduced in Sec. 2. in this paper. Sec. 2. also deals with 
optical gain, rate equations and the nature of relaxation 
oscillations. The most efficient way of solving NLSE is 
definitely the split-step method, which will be described in 
Sec. 3. Verification of the numerical method is given in 
Sec. 4. The results are discussed in Sec. 5. The conclusion 
of this work is described in Sec. 6. 
 

2. THEORETICAL ANALYSIS 
 In order to get a cheaper optical system, we investigate 
direct laser modulation. We use In0.53Ga0.47As/InP double 
heterostructure (DH) laser, with active layer thickness of  
da = 0.2 µm with length and width:  L = 300 µm and w = 2 
µm, respectively. It is assumed that losses in these two 
layers are αa = 30 cm-1 and αc = 5 cm-1, respectively. 
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Reflectivities of resonator mirrors are both evaluated to be 
0.32, according to the Fresnel equations [3]. Electron life 
time is considered to  
be 2.71 ns. The refractive index is calculated to be          
nra = 3.61 and nrc = 3.32 for active layer and cladding, 
respectively. The theoretically ideal model is considered, 
with no parasitic, and relieved from the effects of the 
environment.  
 When a semiconductor laser is modulated, because it 
takes time for a carrier population n to build up, there will 
be a certain time delay before the final photon density Np is 
reached. Once this steady state is achieved, additional time 
is required for both the carrier (electron-hole pairs) and  
the photon population to come into equilibrium. This 
phenomenon, called relaxation oscillations [3], can be 
simulated by numerically solving the rate equations (1)–(2) 
[1]: 
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where J is the injection current density through which we 
modulate the laser, q stands for the electron charge and d is 
the thickness of the active area. ηi=τnr/(τr + τnr) is the 
internal quantum efficiency which depends on radiative 
and nonradiative recombination times τr and τnr, 
respectively. Furthermore, τ regards to electron lifetime, 
the differential gain is given by   Ω = c/nr⋅∂g/∂n [3] 
introducing g as the material gain. Transparency electron 
concentration is represented by nnom, Γ is the optical 
confinement factor of the active layer, θ is the spontaneous 
emission coupling factor which is defined as the ratio of  
the spontaneous emission coupling rate due to lasing mode 
to total spontaneous emission rate [3] and τp stands for 
photon life time. For the purpose of obtaining more 
accurate results and obtaining a realistic model of physical 
processes in heterostructure lasers, in Eq. (1) and (2) we 
include  nonlinear gain suppression (NGS) coefficient, 
denoted with ε, which has a value of  2.4ּ 10-17 cm-3 [4]. 
More details on solving the system (1)–(2) are given in [1], 
whereas here we investigate how fiber dispersion and 
nonlinearities influence the propagation of this signal 
generated as a solution of (1)-(2). 
 Maxwell’s equations can be used to obtain the wave 
equation that describes light propagation in optical fibers 
[2]. The study of most nonlinear effects in optical fibers 
involves the use of short pulses. When such optical pulses 
propagate inside a fiber, both dispersive and nonlinear 
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effects influence their shape and spectrum. In this section 
we derive a basic equation that governs the propagation of 
optical pulses in nonlinear dispersive fibers: 
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where E(r,t) represents the electric field, P(r,t) is induced 
electric polarization, which consists of two parts such that  
                      ( ) ( ) ( )ttt NLL ,,, rPrPrP +=                         (4) 

where PL(r,t) represents the linear part of the induced 
polarization, whereas PNL(r,t) is treated as a small 
perturbation to the total induced polarization. The optical 
field is assumed to be quasi-monochromatic and able to 
maintain its polarization along the fiber length so that a 
scalar approach is valid. 
 After defining the slowly varying pulse envelope A(z,t) 
we can obtain the following equation for pulse evolution 
inside a single-mode fiber [2]: 
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where α is the absorption coefficient (one can ignore the 
two-photon absorption coefficient, α2, because of its 
relatively small value for silica fibers), γ is the nonlinear 
parameter,  defined as γ = (n2ω0 )/cAeff, which, depending 
on the fiber parameters, takes values in the range of 10-6 –
10-5 (m⋅mW)-1 [2]. Aeff is known as the effective core area, 
n2 as the nonlinear-index coefficient, β2 represents the 
effects of chromatic dispersion, while β3 is the third order 
term in the expansion of β(ω) in a Taylor series about the 
carrier frequency ω0, and is generally negligible, as is the 
case in this paper. TR represents the first moment of the 
nonlinear response function. A frame of reference, moving 
with the pulse at the group velocity vg (so-called retarded 
frame) is used by making the transformation: T = t – z/vg = 
t - β1z. 
   

3. METHOD 
 Since the nonlinear Schrödinger equation (NLSE) is a 
nonlinear partial differential equation, which can be solved 
analytically only in some specific cases in which the 
inverse scattering method can be employed, one can 
conclude that a numerical approach is often necessary for 
understanding nonlinear effects in optical fibers. Methods 
used for solving NLSE are the finite-difference methods 
and pseudospectral methods [2], which are faster than the 
first ones mentioned. The most frequently used method for 
solving the pulse-propagation problems in nonlinear 
dispersive media is the split-step Fourier method. This 
method is much faster since it uses the finite-Fourier-
transform (FFT) algorithm. 
First we rewrite Eq. (5) in a different form: 
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where D is a differential operator that stands for dispersion 
and absorption in a linear medium and N is a nonlinear 
operator that governs the effect of fiber nonlinearities on 
pulse propagation: 
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 For the sake of simplicity, we omitted the second and 
the third term in Eq. (8).  

Dispersion and nonlinearity act together along the fiber. 
The split-step Fourier method is actually an approximate 
solution, in which it is assumed that in propagating the 
optical field over a small distance h, the dispersive and  the 
nonlinear effects can be pretended to act independently. 

Fiber length is divided into a large number of segments 
of length h. Propagation from z to z+h is carried out in two 
steps. In the first one, one can assume that nonlinearity acts 
alone, and D=0. In the second step the dispersion acts 
alone, and N=0. In the equation  

           ( ) ( ) ( ) ( )TzANhDhThzA ,ˆexpˆexp, ≈+                    (9) 

the exponential operator exp(hD) can be expressed in the 
Fourier domain, by replacing the differential operator δ/δT 
by iω, where ω is the frequency in the Fourier domain. The 
split-step Fourier method is accurate to the second order in 
the step size h. The use of the FFT algorithm makes 
numerical evaluation of Eq. (6) relatively fast. This is the 
reason why this method can be up to two orders of 
magnitude faster when compared to most others.  

In order to improve this method one can adopt a 
different procedure to propagate the optical pulse over one 
segment of the fiber. We assumed again that fiber length is 
divided into segments of width h. Now we assume: 
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Now the effect of nonlinearity is not included at the 
boundaries of the segment, but in the middle. This scheme 
is known as the symmetrized split-step Fourier method [2]. 
This way, the z dependence of the nonlinear operator N is 
included. The accuracy of this method can be further 
improved by employing the trapezoidal rule and 
approximating the integral value in Eq.(8) by 
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The problem is that the value of N(z+h) is not known at 
the point z+h/2. It is necessary to follow an iterative 
procedure by replacing N(z+h) by N(z). Then one can 
estimate the value  A(z+h,T), which is used to calculate the 
new value of N(z+h). 
 

4. VERIFICATION OF THE  METHOD 
 The effective way to test the implemented split-step 
Fourier method is to compare it with the situation when 
only chromatic dispersion is taken into account. In that 
case, the fiber transfer function is given by: 
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where L stands for the fiber length. Multiplying this 



function with the pulse generated by the transmitter in the 
Fourier domain, and applying the inverse FFT algorithm 
on this product, we get the temporal form of the signal at 
the receiver end of the fiber.  
 By using the split-step Fourier method, we investigate 
the same signal under the same conditions. Comparison of 
the obtained results demonstrates the accuracy of the split-
step method. 
 In the verification procedure we assume a Gaussian 
shaped input signal and derive the output signal using both 
methods explained above. Fig.1 shows four curves: the 
dotted line represents the input signal, with full width at 
half maximum of 50ps. The power of the signal is 
intentionally oversized, in order to show the influence of 
fiber nonlinearities. The fiber parameters used in this 
simulation are: L = 70 km as the fiber length, α = 0,         
β2 = -2⋅10-26 s2/m and γ = 0. The second and third curves 
(dark solid lines) are obtained by multiplying the input 
signal by the transfer function and by using the split-step 
Fourier method, respectively. This is the verification of our 
numerical method, since these two curves have the exact 
same shape and completely overlap. The fourth curve 
(light solid line) shows the complete split-step simulation, 
with α = 0 dB/km, β2 = -2⋅10-26 s2/m and  γ =  2.43⋅10-6 
(m⋅mW)-1.  
 

 
Fig.1. Split-step method verification. The curves obtained 
using two different methods completely overlap. 
 

5. RESULTS AND DISCUSSION 
 The main purpose of this paper is to investigate the 
influence of fiber dispersion and nonlinearity on directly 
modulated laser signal. In the case of direct modulation, 
the signal is affected by relaxation oscillations which cause 
distortion of the signal and its deviation from the ideal 
rectangular form. For the sake of comparison, we consider 
propagation of a rectangular pulse (Fig. 2) and a pulse 
from a directly modulated DH laser (Fig. 3). The laser 
parameters are given in Sec. 2.  

Fig.2 depicts the ideal rectangular pulse with duration of   
0.5 ns. The dashed line represents the input signal, the 
solid line represents the output signal when only chromatic 
dispersion is taken into account, while the dotted line 

stands for the signal when all three parameters (α, β, γ) are 
included. The fiber parameters used in this simulation are 
the same as in the previous one. 

Fig. 3. shows two curves. The dotted one stands for the 
input rectangular signal affected by the relaxation 
oscillations, while the solid line represents the signal 
influenced by the chromatic dispersion only. In the inset, 
the solid line stands for the same signal as in Fig. 3., and 
the dotted line represents the signal when α and γ are also 
included, with the same values as in Fig. 2.  

 

 
Fig.2. Input rectangular pulse (dashed line), pulse after 
propagation through fiber, when only chromatic 
dispersion is included (solid line) and pulse after fiber 
losses and nonlinearity are also included (dotted line).    
  

 
Fig.3. Directly modulated laser output (dotted line) and 
signal after propagation through fiber, when only 
chromatic dispersion is included (solid line). In inset, solid 
line stands for the same signal and dotted line represents 
signal when fiber losses and nonlinearity are also  
included.   
 
As it can be seen, the major change in the shape of the 
input signal is on the horizontal non-zero part of the pulse.  
 Fig. 4. and Fig. 5. show eye diagrams for rectangular 
pulse train and for the pulse train generated by the laser. 
An open eye pattern corresponds to the minimal signal 
distortion. The distortion of the signal due to relaxation 
oscillations, dispersion and fiber nonlinearities appears as 



closure of the eye pattern.  
 The eye pattern for dispersion affected rectangular pulse 
is given in Fig. 4(a). In Fig. 5(a) we present the eye pattern 
for the laser pulse with relaxation oscillations, affected 
only by β2. In Fig. 4(b) and Fig. 5(b) α and γ are included, 
with γ intentionally increased, in order to make the 
influence of nonlinearity more visible. Both eye patterns 
are obtained for the bit rate of 2.5Gbps. 

Relaxation oscillations, combined with fiber dispersion, 
cause distortion of the eye diagram and narrowing of the 
eye opening. We find that fiber nonlinearity does not have 
considerable influence on eye diagrams, at low signal 
power. When β2 increases, the amplitudes of relaxation 
oscillations are smaller, but the signal itself broadens, 
which might lead to an increase of intersymbol interference 
(ISI) and consequently to an increase of BER. When β2 
decreases, the signal broadening is less pronounced, but 
the ripples of relaxation oscillations are less suppressed. 
The superposition of the signal ripples and the noise might 
also lead to an increase of BER. This means that an 
optimum value for chromatic dispersion coefficient might 
exist, for which BER, caused by ISI, and the ripples of 
relaxation oscillations attain a minimum. The influence of 
these effects on BER will be presented elsewhere. 

 

 
Fig.4.(a) Eye diagram for rectangular pulse for α = 0,         
β2 = -2⋅10-26 s2/m and γ = 0. 
 

 
Fig.4.(b) Eye diagram for rectangular pulse for                     
α = 0.2 dB/km, β2 = -2⋅10-26 s2/m and γ = 7.29⋅10-6 
(m⋅mW)-1. 

 
Fig.5.(a) Eye diagram for directly modulated laser output 
for α = 0, β2 = -2⋅10-26 s2/m and γ = 0. 
 

 
Fig.5.(b) Eye diagram for directly modulated laser output 
for α = 0.2 dB/km, β2 = -2⋅10-26 s2/m and γ = 7.29⋅10-6 
(m⋅mW)-1. 

6. CONCLUSION 
 In this paper we analyze the effect of fiber dispersion 
and nonlinearity on the propagation of directly modulated 
laser pulses. We calculate the laser response from the rate 
equations, while the propagation of the laser pulses is 
simulated by using the Fourier split-step method. Our 
simulation shows that the eye diagram at the receiver end 
is significantly affected by the ripples of the relaxation 
oscillations caused by direct modulation of the laser and 
dispersion effects in the fiber. For low signal powers, 
nonlinear effects are not as significant. 
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